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The local squaring functions representing the likelihood that a particular atom

type occupies a particular location in the unit cell are generalized so that the

likelihood that a multiatom fragment occurs at a given position can be modeled

at less than atomic resolution. The orientation space of the fragment is

parameterized according to the special unitary 2-group in order to facilitate both

interpretation and interpolation. The representation theory of this group is

related to the harmonic analysis for functions of rotation. As an example of

computer-aided model construction, local squaring functions for several protein

backbone fragments are applied to a 2.0 AÊ model electron density. The resulting

functions are suf®cient to reconstruct the atomic structure from the probable

template placements.

1. Introduction

Local squaring functions (Roach & Carter, 2002) are a

formulation of atomic shape constraints more closely resem-

bling solvent-¯attening formulations (Wang, 1985; Xiang et. al.

1993) than more traditional convolutional structure-factor

equations (Sayre, 1952; Woolfson, 1958; Rothbauer, 2000). A

local squaring function for a particular atomic form measures

the likelihood that an atom of the given atomic shape occupies

a particular location in the unit cell. In analogy to the Sayre

squaring method equations, these functions can be constructed

from experimentally derived structure factors, amplitude or

phase, and structure factors biased by some initial model.

Furthermore, their closed-form expression, in terms of

convolution, can be calculated ef®ciently using the fast Fourier

transform.

With a combination of several local squaring functions, the

entire unit cell is subjected to a probabilistic ®lter that

dampens density in regions unlikely to contain atoms of any of

the given forms, while enforcing atomic shapes at locations

likely to contain atoms, thereby lifting the requirement for

equal atom types. By enabling effective density modi®cation

within the molecular envelope, the method extends the

solvent-¯attening approach throughout the unit cell. Addi-

tionally, an atomic model can be extracted from the likely

atomic locations expressed in the local squaring functions.

Re®nements using spherical templates have been generally

successful with small protein structures with a high-resolution

set of either experimental or model-biased phases (Roach &

Carter, 2002).

Effective phase re®nement based on local squaring func-

tions suggests that atomic form constraints possess signi®cant

potential. Unlocking this potential, however, has been an

elusive goal. The impact of atomic form constraints has never

been as impressive as other techniques, e.g. solvent ¯attening

and more general density modi®cation (Terwilliger, 2000).

Furthermore, atomic form constraints for general atom types

have never ®gured prominently in an established phase-

re®nement procedure. Although this has been due, in part, to

limited phase-re®nement effectiveness, the requirement of

high-resolution data has also severely restricted their scope.

Even at high resolution (0.9 AÊ ), some atoms are not suf®-

ciently separated to be identi®ed individually by the local

squaring functions of spherical templates. This was ®rst

observed in the carbonyl group of the protein backbone. In

the 0.9 AÊ resolution initial electron density of the C-terminal

Kunitz-type domain of the �3 chain of human type VI collagen

(Arnoux et al., 2002), our atomic local squaring function

investigations could identify only one atom of the carbonyl

pair in 55 of 58 residues with signi®cant density. In no residue

could both carbon and oxygen be separated and in many cases

the atomic placement suggested by the minimum of the local

squaring function fell between the two atomic centers.

To illustrate how this is possible, consider the model-

calculated electron density of the neuronal acetylcholine

receptor antagonist, �-conotoxin PnIA. Containing only 16

residues, this very small protein is a potent toxin derived from

cone snails, Conus pennaceus. The X-ray structure determi-

nation revealed a compact and intricate arrangement of a

�-turn followed by two �-helical turns all stabilized by two

disul®de bridges (Hu et al., 1996).

Fig. 1 shows a 1.0 AÊ electron density map at two different

contour levels: 3� (a) and 1� (b). Note that, even at relatively

high contour levels, 3�, the individual atoms of the carbonyl
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group remain joined. Furthermore, comparison of the 1� level

to the 3� level shows that a signi®cant portion of the electron

density clearly takes a value lower than that required to

separate most atoms.

It is important to note that this example shows a highly

sharpened electron density calculated from a model whose

atoms have average temperature factor less than 8 AÊ 2. Thus,

even in ideal conditions, there is not suf®cient separation in

the carbonyl group to treat each individual atom as a

completely independent entity.

Related problems are shared by all direct-methods

approaches that are predicated on the assumption that atoms

are placed independently (Bricogne, 1997b). In reality, of

course, the atomic locations are highly dependent upon one

another regardless of resolution; however, at high resolution

this independence approximation is less drastic. Coordinate-

re®nement techniques are also compromised by limited

resolution. For example, the real-space re®nement method of

Chapman (1995) attempts to compensate for the absence of

high-resolution data with specially chosen atomic scattering

factors.

Needless to say, electron-density maps typically encoun-

tered in macromolecular crystallography are not this sharply

de®ned. In most cases, even with noise and other imperfec-

tions suppressed, taking the atoms to be completely inde-

pendent entities remains a crude approximation. Therefore,

stereochemical interactions must be taken into account. In

the case of local squaring functions, overcoming the lack of

separation at lower resolution requires the implementation of

functions that recognize multiple atom fragments as well as

individual atoms.

2. Local squaring functions: translation

Recall the de®nition of the local squaring function (Roach &

Carter, 2002). For any particular template density �0,

O��; y� � R
V

j��x��0�xÿ y� ÿ �2
0�xÿ y�j2 dx3;

where V denotes the unit cell. Although it has been previously

assumed that �0 represents a spherical atomic form, in the

above de®nition this is not strictly required. Let �0�x; #�
denote a non-spherical density with some ®xed orientation #.

At this point, the representation of this orientation is not

necessary; however, it will be discussed in detail shortly. Given

this template density,

O��; #; y� � R
V

j��x��0�xÿ y; #� ÿ �2
0�xÿ y; #�j2 dx3

models the likelihood that a particular template �0 occurs with

orientation # at location y. For each template, the local

squaring function corresponding to that template is a function

of both location and orientation. Therefore it will have a

translational Fourier expansion in terms of location for any

®xed orientation and a rotational Fourier expansion in terms

of orientation for a ®xed location.

Determining the translational Fourier coef®cients, i.e.

structure factors, proceeds analogously to the determination

for spherical templates. To simplify the notation, let �0 denote

some template density with ®xed orientation #. Assuming the

electron density � takes only real values, consider the

expansion of O��; #; y�:
O��; #; y� � R

V

��2�x��2
0�xÿ y� ÿ 2��x��3

0�xÿ y�� dx3 � K;

where the constant K is given by

K � R
V

�4
0�xÿ y; #� dx3:

With the asterisk signifying complex conjugation and jVj
denoting the volume of the unit cell, the structure factors of

the local squaring function are given by

Ôh � ��f �2�h ��=jVj�
P

k

FkFhÿk ÿ 2Fh�f �3�h �� � ��h�K; �1�

where f
�n�
h denotes the scattering factor of �n

0 and ��h� � 0 for

all h 6� 0 and ��0� � 1.

The methods necessary to construct the rotational Fourier

expansion are somewhat less well known. In the sequel, the

problem of generating a Fourier series with respect to orien-

tation for a local squaring function of ®xed location is

discussed in detail.

Figure 1
Electron density fjFcj; 'cg at 1.0 AÊ resolution calculated from published
atomic coordinates for �-conotoxin PnIA. (a) Contoured at the 3� level.
Carbonyl pairs remain unseparated. (b) Contoured at the 1� level. A
signi®cant portion of the electron density occurs at levels where most
atoms are unresolved.



3. Functions of rotations

Consider the rotation function familiar from molecular

replacement. In order to determine the correct orientation of

a molecular fragment known to be in the unknown structure,

the Patterson function of the known fragment Ps with orien-

tation # is compared to the observed Patterson Pt. The rota-

tion function R is given by

R�#� � �1=jVj� R



Pt�r�Ps�#ÿ1r� dr3

(Rossmann & Blow, 1962; Navaza, 2001). The interpretation

of the rotation function is that rotations # with large values of

R correspond to orientations of the known fragment that

coincide with orientations of similar fragments in the unknown

structure. Therefore, the rotation function compares Patterson

functions to identify likely orientations of the known fragment

within an unknown structure.

For a ®xed location, the local squaring function compares

the electron density of a known fragment to an electron

density derived from initial phase estimates. By considering all

possible orientations of the fragment, the local squaring

function indicates orientations that the fragment is likely to

take at a given location. Note, however, that large values of

the rotation function correspond to likely orientations in

contrast to the local squaring function where values near zero

denote probable orientations at a given location. The need in

both cases to consider the set of all possible rotations suggests

that an approach to the orientation component of the local

squaring function could proceed analogously to the

construction of the rotation function.

Calculating a rotation function requires parameterizing and

sampling of the space of rotations. It is necessary to sample

the parameterization appropriately to produce a uniform

sampling of the rotation space. For example, given the Euler-

angle parameterization of the rotation group, sampling the set

of all possible rotations uniformly is not the same as sampling

the set of all possible Euler angles uniformly. This approach,

the fast rotation function formulation of Crowther (1972),

does however have the advantage of being highly suitable for

calculation: reducing to a standard two-dimensional Fourier

transform.

Unfortunately, the resulting function is distorted because

rotations that have similar parameters need not correspond to

similar rotations. In fact, the metric on the rotation group

cannot be reduced to a Cartesian metric (Navaza, 2001). As a

result, the rotation function can be dif®cult to interpret. Some

modi®cation can be made to reduce these dif®culties, for

example: reformulation in polar coordinates (Tanaka, 1977)

or considering distortion-free two-dimensional sections

(Burdina, 1971; Lattman, 1972). Nonetheless, the distortion is

due to topological properties of the rotation group and can

never be completely eliminated. Details of the relationship

between the fast rotation function and the topology of the

rotation group are given by Navaza (2001); however, the

important point that needs to be emphasized is the develop-

ment of the spherical harmonics and the role of the irreducible

representations of the rotation group in the fast rotation

function.

For the orientation component of the local squaring func-

tion, a different parameterization of the orientation space will

be considered. This parameterization has the advantage of

being topologically equivalent to a sphere in four dimensions.

Therefore, sampling, interpretation and interpolation follow

from a familiar three-dimensional analog: a globe.

3.1. Classical linear groups

Before the orientation parameterization can be described in

detail, it is necessary to relate some of the theory of classical

linear groups (Zhelobenko, 1973), i.e. groups of linear trans-

formations. For example, the rotation group of the previous

section corresponds to the group of orthogonal linear trans-

formations ®xing the origin that preserve chirality. In three

Euclidean dimensions, this group is referred to as the special

orthogonal group of dimension three over the real numbers

(SO3). Another example would be the group of linear trans-

formations preserving volume, the special linear group. The

term special refers to the fact that the matrix representation of

elements of these groups have determinant one. Often it is

convenient to identify the matrix representation with the

group itself. For example, typically it is suf®cient to refer to the

matrix

1 0 0

0 cos�#� sin�#�
0 ÿ sin�#� cos�#�

24 35
as a rotation of # about the x axis. Therefore, in terms of

matrix representations, the rotation group or SO3 corresponds

to 3� 3 real orthogonal matrices of determinant one.

The group of interest in connection with the spherical

parameterization of the orientation space is the special unitary

group of two complex dimensions (SU2). The matrix repre-

sentation of SU2 consists of 2� 2 complex unitary matrices of

determinant one. Every element of SU2 is given by two

complex numbers, a and b, as:

a b

ÿb� a�

� �
;

where jaj2 � jbj2 � 1. If we let a � x� iy and b � z� it, this

last condition implies that x2 � y2 � z2 � t2 � 1. Conse-

quently, SU2 is topologically equivalent to the surface of a

sphere in four (real) dimensions.

The special unitary group (SU2) is pertinent to the local

squaring function because each rotation, or element of SO3,

corresponds to two diametrically opposite elements of SU2.

Explicitly, the elements given by a, b and ÿa, ÿb both

correspond to:

jaj2 ÿ jbj2 2<�a�b� 2=�a�b�
ÿ2<�ab� <�a2 ÿ b2� ÿ=�a2 � b2�
ÿ2=�ab� =�a2 ÿ b2� <�a2 � b2�

24 35: �2�

It can be easily checked that (2) is orthogonal and has

determinant one when jaj2 � jbj2 � 1. Mathematically, this
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situation is described as SU2 being locally isomorphic to SO3

and covering it twice (Zhelobenko, 1973, p. 35). The advantage

of this parameterization is that the topology of the space is

reasonably familiar: a sphere in four (real) dimensions.

Therefore, the difference between two rotations corresponds

to the great circle distance on the sphere, facilitating the

interpretation and interpolation of a function of rotations.

These advantages have made use of the special unitary

group common in computer animation (Shoemake, 1985),

molecular modeling (Leach, 1996) and Bayesian molecular

replacement (Bricogne, 1997a; Morris et al., 2001). In some

cases, elements of SU2 are called unit quaternions, referring to

elements of the quaternion algebra with magnitude one

(Zhelobenko, 1973, p. 33).

3.2. Fourier expansions

Periodicity is a familiar concept in crystallography: peri-

odicity allows the electron density to be expressed in terms of

a Fourier series, i.e. using structure factors. This illustrates a

fundamental result in the theory of group representations: the

use of group symmetry or periodicity with respect to some

group in developing a linear basis for functions exhibiting that

symmetry. The familiar case uses the group symmetry of the

translation group to express the electron density as a series of

linearly independent functions. We will see that the particular

symmetry of the rotation group leads to the spherical

harmonic expression of the fast rotation function. In order to

exploit this idea for the local squaring function, it will be

necessary to describe the abstract Fourier transform on the

special unitary group SU2.

Most of the technical details are given in the references

(Zhelobenko, 1973; Kirillov, 1994) and the theory of Fourier

transforms on linear groups more or less parallels the theory

of Fourier series. It is ®rst necessary to determine the irre-

ducible representations of SU2 then an appropriate Fourier

series can be assembled from them.

A representation of a group corresponds to the action of

the group on some linear space. For example, consider the

homogeneous polynomials of degree N in indeterminants u, v

with complex coef®cients. As a vector space VN, this set has a

basis given by funv�Nÿn�jn � 0; . . . ;Ng. To be concrete, choose

degree 2. The vector space of homogeneous degree 2 poly-

nomials, V2, has basis u2, uv and v2. That is, each homogeneous

degree 2 polynomial can be expressed as

P � �u2 � �uv� v2 �; �;  2 C:

Now let g be some element of SU2, say

g � a b

ÿb� a�

� �
;

where a and b are complex with jaj2 � jbj2 � 1. Consider the

following action of g on the vector space VN :

�TN�g�P��u; v� � P u v
� � a b

ÿb� a�

� �� �
� P�auÿ b�v; bu� a�v�: �3�

For the vector space V2, T2�g� is a linear transformation and

therefore has a matrix representation. In this case, with

respect to the basis u2, uv and v2, T2�g� takes the form

a2 ab b2

ÿ2ab� jaj2 ÿ jbj2 2a�b
�b��2 ÿa�b� �a��2

24 35
for g an element of SU2. An irreducible representation V

preserves only the trivial subspaces f0g and V. Equation (3)

de®nes the complete set of irreducible representations for

SU2 (Zhelobenko, 1973, p. 93). That is, there is one irreducible

representation of degree n� 1 for each non-negative

integer n.

For a wide class of functions, speci®cally those that are

square-integrable under some appropriate measure, the irre-

ducible representations de®ne a series expansion analogous to

the Fourier series. Within this class, a function f �g� on SU2 can

be expressed as

f �g� � P1
n�0

�n� 1�Tr
ÿ
f̂ �n�Tn�g�

�
; �4�

where Tr denotes the matrix trace. The `Fourier coef®cient'

f̂ �n� is an �n� 1� � �n� 1� complex matrix given by

f̂ �n� � R f �g�Tn�gÿ1� dg; �5�
where the integral is taken over the entire group SU2

(Zhelobenko, 1973, p. 74; Sugiura, 1975, p. 76).

4. Local squaring functions: rotation of a general
fragment

For a fragment possessing no symmetry, every possible rota-

tion corresponds to a unique orientation of the fragment.

Therefore, parameterizing the orientation space corresponds

exactly to parameterizing the space of rotations. Param-

eterizing the rotation space for local squaring functions does

not require the full generality of (4) and (5). In particular,

since the local squaring functions take only real values, an

analogous result to Friedel's law reduces the number of

independent entries in the Fourier coef®cient matrices of (5).

Furthermore, the local squaring functions are functions of

rotations and not of general elements of SU2. Since a rotation

corresponds to two elements of SU2, the Fourier expansion

must take the same value on both elements of SU2 corre-

sponding to the same rotation.

The double covering of rotations is apparent in the Fourier

series for functions of SU2. The Fourier coef®cients for even

values of n can be expressed using only real numbers. This fact

can be deduced either abstractly (Kirillov, 1994, p. 68) or by

choosing an appropriate basis. For example, using the bases uv,

ÿi�u2 � v2�=2 and �v2 ÿ u2�=2, the irreducible representation

T2 takes only real values and is equal to the matrix (2)

converting elements of SU2 to rotations. The Fourier coef®-

cients for odd n are quaternion representations and are non-

zero for functions that take different values for elements of

SU2 corresponding to the same rotation. This observation,

re¯ecting the relationship between SU2 and the rotation



group SO3, leads to a derivation of the spherical harmonics

from the irreducible representations of SU2 (Zhelobenko,

1973, p. 100). Therefore, given that the local squaring func-

tions take only real values and that they take the same value

for diametrically opposite elements of SU2, the SU2-Fourier

expansion of a local squaring function contains only the even

terms, 2n, and each of the even Fourier coef®cients is a real

�2n� 1� � �2n� 1� matrix.

Even with these reductions, constructing and minimizing an

extensive rotational Fourier expansion of the local squaring

function for a particular fragment at each point in the unit cell

is too costly to be an option. The simplest approach would be

to calculate the local squaring function using equation (1) for a

large number of orientations sampled uniformly throughout

the orientation space. Choosing the orientation taking the

minimal value gives an approximation to the optimal orien-

tation. The quality of this approximation, of course, depends

on the sampling density; therefore, this involves a trade-off

between accuracy and ef®ciency.

4.1. Global interpolation

A more sophisticated approach is analogous to the use

of Hendrickson±Lattman coef®cients. Hendrickson±Lattman

coef®cients are the ®rst four Fourier coef®cients of the phase

probability distribution function. Thus, a phase estimate can

be generated by maximizing a short Fourier series determined

by the Hendrickson±Lattman coef®cients. Analogously, an

estimate of the best orientation can be determined by mini-

mizing a short rotational Fourier expansion of the local

squaring function. In this case, the accuracy of the estimate

will be determined by how well the true function is globally

approximated by the short Fourier series.

Consider a two-term Fourier expansion:

f �g� � f̂ �0� � Tr
ÿ
f̂ �2�T2�g�

�
;

where g is an element of SU2 corresponding to the orientation

of the fragment and the Fourier coef®cients, f̂ �0� and f̂ �2�, are

1� 1 and 3� 3 real matrices, respectively. For g given by

x� iy and z� it, the series takes the form of a quadratic

polynomial in x, y, z and t, where x2 � y2 � z2 � t2 � 1:

f �x; y; z; t� � A0 � A1�x2 � y2� � A2�x2 � z2� � A3�x2 � t2�
� A4xy� A5xz� A6xt � A7yz� A8yt � A9zt:

Once the ten real parameters have been determined, either

by least-squares interpolation or by some other means, the

function can be maximized. Since the solution is constrained

to the sphere of unit radius, the optimization requires the

method of Lagrange multipliers. That is:

f �x; y; z; t� ÿ ��x2 � y2 � z2 � t2 ÿ 1�
must be taken to a maximum. In this particular case, where the

objective function f is quadratic with no linear terms and the

constraint is homogeneous of degree two, maximizing the

Lagrangian reduces to determining the eigenvectors and

eigenvalues of the Hessian H of f . Each eigenvalue corre-

sponds to a value of the Lagrange multiplier, �, and the

normalized eigenvector corresponding to it represents an

orientation where f takes an extreme value. Therefore, the

best estimate can be obtained by testing the value of f for each

eigenvector. Since the Hessian is only 4� 4 and consequently

there are at most four possible extrema, this calculation can be

performed at each point of the unit cell within a reasonable

time frame.

4.2. Local polynomial interpolation

A second approach combining the sampling technique of

the simple approach with the interpolation aspects of the short

Fourier-series approach would be to construct a polynomial

function that locally approximates the true function in the

region surrounding the minimal sampled value.

In order to construct a local polynomial approximation, it is

necessary to establish a set of local coordinates for the

4-sphere. These local coordinates are analogous to using polar

coordinates to describe a point on the surface of a unit sphere

in three dimensions or a phase to describe a point on the unit

circle in two dimensions. Given that

x2 � y2 � z2 � t2 � 1;

there exists some value of #1 such that x � cos#1. Thus we

have:

y2 � z2 � t2 � sin2 #1:

Consequently, except for the circle where z2 � t2 � 0, the SU2

can be represented by the local coordinates #1, #2, #3 such

that:

x � cos#1

z � sin#1 sin#2 cos#3

y � sin#1 cos#2

t � sin#1 sin#2 sin#3

for 0 � #1 � 2�, 0 � #2 � � and 0 � #3 � 2� (Sugiura, 1975,

p. 56). It is interesting to note that another choice of local

coordinates, the Euler angles, leads to the spherical harmonic

expansion for functions of the sphere in three dimensions

(Zhelobenko, 1973, p. 100).

Once a set of local coordinates is chosen, a quadratic

polynomial in the three variables can be interpolated from the

sample points surrounding the purported optimum. A quad-

ratic polynomial is particularly suitable because its optimal

value, if it exists, can be easily calculated. The dif®culty in this

technique lies in the construction of an initial orientation

sample that covers enough of the orientation space to identify

the general region where an optimum lies yet is still ®ne

enough to construct a local function that accurately represents

the function in that region.

5. Local squaring functions: rotation of a symmetric
fragment

When the template density possesses additional symmetry, it is

no longer the case that the set of all possible orientations is

parameterized by the set of rotations given by SU2 or SO3.

Consider a molecular fragment consisting of spherical atoms

representing the carbon±oxygen pair in a carbonyl group. The

Acta Cryst. (2003). A59, 273±280 Roach and Carter � Local squaring functions 277

research papers



research papers

278 Roach and Carter � Local squaring functions Acta Cryst. (2003). A59, 273±280

orientation of this fragment is ®xed by any rotation about the

axis formed by the center of the two atoms. Centering the

carbonyl fragment on the carbon atom, it is easy to see that the

complete set of orientations is given by the location of the

oxygen atom. That is, the space of orientations is param-

eterized by a sphere in three dimensions as opposed to a

sphere in four dimensions.

Consider a molecular fragment that is ®xed by any rotation

of the x axis. Mathematically, this corresponds to a subgroup K

of SU2 given by elements of the form

g � a 0

0 a�

� �
:

If a � exp�i#�, the above matrix represents a rotation of 2#
about the x axis. Unfortunately, the subgroup K is not normal

in SU2; it is, nonetheless, possible to describe an orthonormal

basis for the square-integral functions on the cosets G=K, i.e.

those functions that remain ®xed by K.

It is possible to determine equations that the Fourier

coef®cients of a function on G=K must satisfy, viz:

f �g� � P1
n�0

�n� 1�Tr
ÿ
f̂ �n�Tn�g�

�
� P1

n�0

�n� 1�Tr
ÿ
f̂ �n�Tn�kg�� � f �kg� �6�

for all k 2 K. This method is laborious but intuitive and it can

be shown that the Fourier coef®cient f̂ �n� is zero for all

columns except the ®rst.

An alternative approach is available using the theory of

spherical functions (Takeuchi, 1994) or homogeneous spaces

(Zhelobenko, 1973). Let B1 be some basis element of the

irreducible representation V2N that is ®xed by the subgroup K.

In this particular case, the basis element uNvN is invariant with

respect to K. The set of functions Ri given by

Ri�gK� � hT2N�g�B1;Bii;
where h; i is a SU2-invariant Hermitian form (c.f. Zhelobenko,

1973; Kirillov, 1994), is an orthogonal basis for the square-

integrable functions that are invariant under the action of K.

This basis corresponds to the ®rst row of the matrix for the

irreducible representation T2N . Therefore, the same class of

functions is speci®ed by the intuitive approach (6). For T2,

R1 � x2 � y2 ÿ z2 ÿ t2; R2 � 2�xz� yt�; R3 � 2�xt ÿ yz�:

Note that R2
1 � R2

2 � R2
3 � 1, thus R1, R2 and R3 specify a

sphere in three dimensions.

For a template with rotational symmetry about any parti-

cular axis, the local squaring function can be expanded as a

series with basis functions given by (7). Unlike the general

case, construction and minimization of a short Fourier series

does not reduce conveniently to an eigenvector decomposi-

tion. The local approximation, however, proceeds analogously

to the general case requiring only two local parameters to

describe the orientation space. Furthermore, because one less

dimension need be sampled, fewer sample points are neces-

sary to achieve reasonable accuracy.

6. An example

As a concluding example, we return to �-conotoxin to show

how the local squaring functions can be used to construct an

initial atomic model. We considered the local squaring func-

tions associated with three different backbone fragments: a

carbonyl group, an �-carbon-to-�-carbon trans-peptide link,

and a nitrogen-to-carbon backbone segment. Coordinates for

these molecular fragments were taken from Prince et al. (1992)

and centered on the carbon in the carbonyl pair.

A sampling of the orientation space for each fragment was

constructed in the following fashion. A set of 800 points was

built by combining several uniform samplings of the sphere

(Sloane et al., 2000). Then, for each point in a set of 40 points

chosen to maximize the minimal distance between points

(Sloane et al., 2000), the 20 closest neighbors from the 800

element set were added. The resulting sample set consisted of

400 unique sample points on the sphere in four dimensions

and 383 sample points on the sphere in three dimensions.

Local squaring functions for each fragment and each

orientation were constructed using equation (1) and applied to

Figure 2
Model determined by the sampled local squaring function method
(green) superimposed on the correct model (grey). Template orientations
are not perfect; however, most of the backbone is reconstructed
accurately.

Figure 3
Each template is centered on the carbonyl carbon atom. In this case, no
template is placed by the local squaring function at the carbon. However,
templates correctly placed on the adjoining residues cover most of this
residue.



a 2.0 AÊ electron density calculated from the published cono-

toxin model. At each point in the unit cell, a local polynomial

approximation was interpolated from the 15 orientations

nearest to the orientation with the minimum local squaring

function value. In the case of the two larger fragments, a short

Fourier approximation was interpolated.

The short Fourier-series approximation gave some impres-

sion of the rotational component of the local squaring function

at a given point. However, as a method of determining optimal

orientation, it was largely unreliable. The local polynomial

approximation was more effective, resulting in optimal

orientations for several fragments. In the cases where the local

polynomial did not specify a minimum, the optimal orienta-

tion was chosen from the sampled orientations.

Inspection of the rotational component of the local squaring

function at locations corresponding to correctly placed frag-

ments revealed a multimodal function whose local minima

were relatively isolated. The exact nature of the function,

however, appeared to be highly dependent on the type of

fragment as well as the location in the unit cell.

A list of optimal orientations for each fragment was sorted

to obtain the locations of the 50 fragments of each type with

the lowest local squaring function value. Considering overlap

between the fragments, multiple speci®cation due to symmetry

and the given electron density, we constructed an initial model

(Fig. 2). Although some variation in orientation is apparent

both between overlapping components of modeled fragments

and between the proposed structure and the true model, it can

be seen that a large portion of the complete backbone struc-

ture is obtained from the local-squaring-function-based initial

model. In fact, backbone fragments for nine of sixteen resi-

dues are correctly oriented by two or more templates and four

backbone fragments are speci®ed by a single template. The

remaining three residues may not have a template placed

correctly at the carbon in the carbonyl pair; however,

templates from the neighboring residues overlap correctly

(Fig. 3) allowing the backbone to be correctly reconstructed.

It is interesting to note that two (Asn 11 and Asp 14) of

three side-chain carbonyl groups were located. The missing

side-chain carbonyl group mostly was not identi®ed because

of its high temperature factor (T> 30). Furthermore, some

degree of resonance was indicated in Asp 14 by placing two

carbonyl templates of imperfect orientation.

Even in this small case, the necessary computation is

considerable. Calculating the local squaring function for a

single oriented template requires time proportional to a fast

Fourier transform. However, structure and scattering factors

of the oriented templates constitute a library that can be

accessed for calculations with other proteins and calculation

for larger crystal structures scales approximately with the

crystallographic Fourier transform. Furthermore, the proce-

dure is highly suited to parallel implementation. Each of the

local squaring functions, for each template, and each orien-

tation, can be computed independently. Once these have been

computed, optimal orientations for each template can be

calculated at each point in the unit cell independently.

Therefore, provided there is a suf®cient distributed computing

environment, much of the analysis can proceed simulta-

neously.

In explicit terms, the initial work required to construct the

fragment templates and orient them appropriately required

about 15 min. This initialization procedure need only be used

once. The calculation of all local squaring functions required

about 4 min. The generating maps from the local squaring

functions took about 23 min. Finally, determining optimal

orientation, interpolation and constructing the initial atomic

model needed slightly less than 12 min. All these calculations

were completed on a single 500 MHz DEC Alpha.

This example serves as a concrete demonstration of one

practical aspect of the theory. Obviously, with a structure this

small, model building by hand is not particularly laborious.

However, the extension to much larger structures is evident.

Obstacles remain to be overcome in applying this method to

larger systems. Also, developing data analytic methods to

automate initial model construction from the set of likely

fragments will be necessary for phase-re®nement applications.

Nonetheless, local squaring functions for non-spherical

templates provide an effective way to combine phase re®ne-

ment and map interpretations with other direct methods.
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